PaperTrails
Home

Newest Papers

Publication Date:
NewestOldestClear
Average Rating:
HighestLowest

Path To Gain Functional Transparency In Artificial Intelligence With Meaningful Explainability

Md. Tanzib Hosain, Mehedi Hasan Anik, Sadman Rafi, Rana Tabassum, Khaleque Insia, Md. Mehrab Siddiky
dergipark.org.tr·2025
No abstract available
No ratings yet
View paper →

On Evolution-Based Models for Experimentation Under Interference

Sadegh Shirani, Mohsen Bayati
arXiv·2025
Causal effect estimation in networked systems is central to data-driven decision making. In such settings, interventions on one unit can spill over to others, and in complex physical or social systems, the interaction pathways driving these interference structures remain largely unobserved. We argue that for identifying population-level causal effects, it is not necessary to recover the exact network structure; instead, it suffices to characterize how those interactions contribute to the evolution of outcomes. Building on this principle, we study an evolution-based approach that investigates how outcomes change across observation rounds in response to interventions, hence compensating for missing network information. Using an exposure-mapping perspective, we give an axiomatic characterization of when the empirical distribution of outcomes follows a low-dimensional recursive equation, and identify minimal structural conditions under which such evolution mappings exist. We frame this as a distributional counterpart to difference-in-differences. Rather than assuming parallel paths for individual units, it exploits parallel evolution patterns across treatment scenarios to estimate counterfactual trajectories. A key insight is that treatment randomization plays a role beyond eliminating latent confounding; it induces an implicit sampling from hidden interference channels, enabling consistent learning about heterogeneous spillover effects. We highlight causal message passing as an instantiation of this method in dense networks while extending to more general interference structures, including influencer networks where a small set of units drives most spillovers. Finally, we discuss the limits of this approach, showing that strong temporal trends or endogenous interference can undermine identification.
No ratings yet
View paper →

Qwen3-VL Technical Report

Shuai Bai, Yuxuan Cai, Ruizhe Chen, Keqin Chen, Xionghui Chen, Zesen Cheng, Lianghao Deng, Wei Ding, Chang Gao, Chunjiang Ge, Wenbin Ge, Zhifang Guo, Qidong Huang, Jie Huang, Fei Huang, Binyuan Hui, Shutong Jiang, Zhaohai Li, Mingsheng Li, Mei Li, Kaixin Li, Zicheng Lin, Junyang Lin, Xuejing Liu, Jiawei Liu, Chenglong Liu, Yang Liu, Dayiheng Liu, Shixuan Liu, Dunjie Lu, Ruilin Luo, Chenxu Lv, Rui Men, Lingchen Meng, Xuancheng Ren, Xingzhang Ren, Sibo Song, Yuchong Sun, Jun Tang, Jianhong Tu, Jianqiang Wan, Peng Wang, Pengfei Wang, Qiuyue Wang, Yuxuan Wang, Tianbao Xie, Yiheng Xu, Haiyang Xu, Jin Xu, Zhibo Yang, Mingkun Yang, Jianxin Yang, An Yang, Bowen Yu, Fei Zhang, Hang Zhang, Xi Zhang, Bo Zheng, Humen Zhong, Jingren Zhou, Fan Zhou, Jing Zhou, Yuanzhi Zhu, Ke Zhu
arXiv·2025
We introduce Qwen3-VL, the most capable vision-language model in the Qwen series to date, achieving superior performance across a broad range of multimodal benchmarks. It natively supports interleaved contexts of up to 256K tokens, seamlessly integrating text, images, and video. The model family includes both dense (2B/4B/8B/32B) and mixture-of-experts (30B-A3B/235B-A22B) variants to accommodate diverse latency-quality trade-offs. Qwen3-VL delivers three core pillars: (i) markedly stronger pure-text understanding, surpassing comparable text-only backbones in several cases; (ii) robust long-context comprehension with a native 256K-token window for both text and interleaved multimodal inputs, enabling faithful retention, retrieval, and cross-referencing across long documents and videos; and (iii) advanced multimodal reasoning across single-image, multi-image, and video tasks, demonstrating leading performance on comprehensive evaluations such as MMMU and visual-math benchmarks (e.g., MathVista and MathVision). Architecturally, we introduce three key upgrades: (i) an enhanced interleaved-MRoPE for stronger spatial-temporal modeling across images and video; (ii) DeepStack integration, which effectively leverages multi-level ViT features to tighten vision-language alignment; and (iii) text-based time alignment for video, evolving from T-RoPE to explicit textual timestamp alignment for more precise temporal grounding. Under comparable token budgets and latency constraints, Qwen3-VL achieves superior performance in both dense and Mixture-of-Experts (MoE) architectures. We envision Qwen3-VL serving as a foundational engine for image-grounded reasoning, agentic decision-making, and multimodal code intelligence in real-world workflows.
No ratings yet
View paper →

Choosing What Game to Play without Selecting Equilibria: Inferring Safe (Pareto) Improvements in Binary Constraint Structures

Caspar Oesterheld, Vincent Conitzer
arXiv·2025
We consider a setting in which a principal gets to choose which game from some given set is played by a group of agents. The principal would like to choose a game that favors one of the players, the social preferences of the players, or the principal's own preferences. Unfortunately, given the potential multiplicity of equilibria, it is conceptually unclear how to tell which of even any two games is better. Oesterheld et al. (2022) propose that we use assumptions about outcome correspondence -- i.e., about how the outcomes of different games relate -- to allow comparisons in some cases. For example, it seems reasonable to assume that isomorphic games are played isomorphically. From such assumptions we can sometimes deduce that the outcome of one game G' is guaranteed to be better than the outcome of another game G, even if we do not have beliefs about how each of G and G' will be played individually. Following Oesterheld et al., we then call G' a safe improvement on G. In this paper, we study how to derive safe improvement relations. We first show that if we are given a set of games and arbitrary assumptions about outcome correspondence between these games, deriving safe improvement relations is co-NP-complete. We then study the (in)completeness of a natural set of inference rules for outcome correspondence. We show that in general the inference rules are incomplete. However, we also show that under natural, generally applicable assumptions about outcome correspondence the rules are complete.
No ratings yet
View paper →

Commutative rings with $n$-$1$-absorbing prime factorization

Abdelhaq El Khalfi, Hicham Laarabi, Suat Koç
arXiv·2025
Let $R$ be a commutative ring with $1\neq 0$ and $n$ be a fixed positive integer. A proper ideal $I$ of $R$ is said to be an \textit{$n$-OA ideal} if whenever $a_1a_2\cdots a_{n+1}\in I$ for some nonunits $a_1,a_2,\ldots,a_{n+1}\in R$, then $a_1a_2\cdots a_n\in I$ or $a_{n+1}\in I$. A commutative ring $R$ is said to be an \textit{$n$-OAF ring} if every proper ideal $I$ of $R$ is a product of finitely many $n$-OA ideals. In fact, $1$-OAF rings and $2$-OAF $2$-OAF-rings are exactly the general ZPI rings and OAF rings, respectively. In addition to giving various properties of $n$-OAF rings, we give a characterization of Noetherian von Neumann regular rings in terms of our new concept. Furthermore, we investigate the $n$-OAF property of some extension of rings such as the polynomial ring $R[X]$, the formal power series ring $R[[X]]$, the ring of $A+XB[X]$, and the trivial extension $R=A\propto E$ of an $A$-module $E$.
No ratings yet
View paper →

Towards Trustworthy Legal AI through LLM Agents and Formal Reasoning

Linze Chen, Yufan Cai, Zhe Hou, Jinsong Dong
arXiv·2025
The rationality of law manifests in two forms: substantive rationality, which concerns the fairness or moral desirability of outcomes, and formal rationality, which requires legal decisions to follow explicitly stated, general, and logically coherent rules. Existing LLM-based systems excel at surface-level text analysis but lack the guarantees required for principled jurisprudence. We introduce L4M, a novel framework that combines adversarial LLM agents with SMT-solver-backed proofs to unite the interpretive flexibility of natural language with the rigor of symbolic verification. The pipeline consists of three phases: (1) Statute Formalization, where domain-specific prompts convert legal provisions into logical formulae; (2) Dual Fact and Statute Extraction, in which prosecutor- and defense-aligned LLMs independently map case narratives to fact tuples and statutes, ensuring role isolation; and (3) Solver-Centric Adjudication, where an autoformalizer compiles both parties' arguments into logic constraints, and unsat cores trigger iterative self-critique until a satisfiable formula is achieved, which is then verbalized by a Judge-LLM into a transparent verdict and optimized sentence. Experimental results on public benchmarks show that our system surpasses advanced LLMs including GPT-o4-mini, DeepSeek-V3, and Claude 4 as well as state-of-the-art Legal AI baselines, while providing rigorous and explainable symbolic justifications.
No ratings yet
View paper →

Why AI Safety Won't Make America Lose The Race With China

Scott Alexander
Substack·2025
...
No ratings yet
View paper →

ENACT: Evaluating Embodied Cognition with World Modeling of Egocentric Interaction

Qineng Wang, Wenlong Huang, Yu Zhou, Hang Yin, Tianwei Bao, Jianwen Lyu, Weiyu Liu, Ruohan Zhang, Jiajun Wu, Li Fei-Fei, Manling Li
arXiv·2025
Embodied cognition argues that intelligence arises from sensorimotor interaction rather than passive observation. It raises an intriguing question: do modern vision-language models (VLMs), trained largely in a disembodied manner, exhibit signs of embodied cognition? We introduce ENACT, a benchmark that casts evaluation of embodied cognition as world modeling from egocentric interaction in a visual question answering (VQA) format. Framed as a partially observable Markov decision process (POMDP) whose actions are scene graph changes, ENACT comprises two complementary sequence reordering tasks: forward world modeling (reorder shuffled observations given actions) and inverse world modeling (reorder shuffled actions given observations). While conceptually simple, solving these tasks implicitly demands capabilities central to embodied cognition-affordance recognition, action-effect reasoning, embodied awareness, and interactive, long-horizon memory from partially observable egocentric input, while avoiding low-level image synthesis that could confound the evaluation. We provide a scalable pipeline that synthesizes QA pairs from robotics simulation (BEHAVIOR) and evaluates models on 8,972 QA pairs spanning long-horizon home-scale activities. Experiments reveal a performance gap between frontier VLMs and humans that widens with interaction horizon. Models consistently perform better on the inverse task than the forward one and exhibit anthropocentric biases, including a preference for right-handed actions and degradation when camera intrinsics or viewpoints deviate from human vision. Website at https://enact-embodied-cognition.github.io/.
No ratings yet
View paper →

Constrained deep learning for pricing and hedging european options in incomplete markets

Nicolas Baradel
arXiv·2025
In incomplete financial markets, pricing and hedging European options lack a unique no-arbitrage solution due to unhedgeable risks. This paper introduces a constrained deep learning approach to determine option prices and hedging strategies that minimize the Profit and Loss (P&L) distribution around zero. We employ a single neural network to represent the option price function, with its gradient serving as the hedging strategy, optimized via a loss function enforcing the self-financing portfolio condition. A key challenge arises from the non-smooth nature of option payoffs (e.g., vanilla calls are non-differentiable at-the-money, while digital options are discontinuous), which conflicts with the inherent smoothness of standard neural networks. To address this, we compare unconstrained networks against constrained architectures that explicitly embed the terminal payoff condition, drawing inspiration from PDE-solving techniques. Our framework assumes two tradable assets: the underlying and a liquid call option capturing volatility dynamics. Numerical experiments evaluate the method on simple options with varying non-smoothness, the exotic Equinox option, and scenarios with market jumps for robustness. Results demonstrate superior P&L distributions, highlighting the efficacy of constrained networks in handling realistic payoffs. This work advances machine learning applications in quantitative finance by integrating boundary constraints, offering a practical tool for pricing and hedging in incomplete markets.
No ratings yet
View paper →

Introducing Claude Opus 4.5

Anthropic
Anthropic Blog·2025
Anthropic is an AI safety and research company that's working to build reliable, interpretable, and steerable AI systems.
No ratings yet
View paper →

MiMo-Embodied: X-Embodied Foundation Model Technical Report

Xiaoshuai Hao, Lei Zhou, Zhijian Huang, Zhiwen Hou, Yingbo Tang, Lingfeng Zhang, Guang Li, Zheng Lu, Shuhuai Ren, Xianhui Meng, Yuchen Zhang, Jing Wu, Jinghui Lu, Chenxu Dang, Jiayi Guan, Jianhua Wu, Zhiyi Hou, Hanbing Li, Shumeng Xia, Mingliang Zhou, Yinan Zheng, Zihao Yue, Shuhao Gu, Hao Tian, Yuannan Shen, Jianwei Cui, Wen Zhang, Shaoqing Xu, Bing Wang, Haiyang Sun, Zeyu Zhu, Yuncheng Jiang, Zibin Guo, Chuhong Gong, Chaofan Zhang, Wenbo Ding, Kun Ma, Guang Chen, Rui Cai, Diyun Xiang, Heng Qu, Fuli Luo, Hangjun Ye, Long Chen
arXiv·2025
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Perception, Status Prediction, and Driving Planning. Across these tasks, MiMo-Embodied significantly outperforms existing open-source, closed-source, and specialized baselines. Our results indicate that through multi-stage learning, curated data construction, and CoT/RL fine-tuning, these two domains exhibit strong positive transfer and mutually reinforce one another. We provide a detailed analysis of our model design and training methodologies to facilitate further research. Code and models are available at https://github.com/XiaomiMiMo/MiMo-Embodied.
No ratings yet
View paper →

The New AI Consciousness Paper

Scott Alexander
Substack·2025
...
No ratings yet
View paper →
Page 1 of 7Next