Hot accretion onto spiral galaxies: the origin of extended and warped HI discs
Sriram Sankar, Jonathan Stern, Chris Power, Barbara Catinella, Drummond Fielding, Claude-André Faucher-Giguère, Imran Sultan, Michael Boylan-Kolchin, Joss Bland-Hawthorn
arXiv·2025
Gas accretion, hot ($\sim 10^6\,{\rm K}$) atmospheres, and a tilt between the rotation axes of the disc and the atmosphere are all robust predictions of standard cosmology for massive star-forming galaxies at low redshift. Using idealized hydrodynamic simulations, we demonstrate that the central regions of hot galaxy atmospheres continuously condense into cool ($\sim10^4\,{\rm K}$) discs, while being replenished by an inflow from larger scales. The size and orientation of the condensed disc are determined by the angular momentum of the atmosphere, so it is large and often tilted with respect to the pre-existing galaxy disc. Continuous smooth accretion from hot atmospheres can thus both provide the necessary fuel for star formation and explain the observed ubiquity of extended and warped HI discs around local spirals. In this hot accretion scenario, cool gas observations cannot be used to trace the source of the HI, warps out to halo radii, consistent with recent indications of a lack of $21\,{\rm cm}$ emission from the halos of nearby galaxies (the `HI desert'). Observations of HI warps formed via hot accretion can be used to constrain the angular momentum, accretion rate, and gas metallicity of hot galaxy atmospheres, important parameters for disc galaxy evolution that are hard to determine by other means.