PaperTrails
Home

Oldest Papers

Publication Date:
NewestOldestClear
Average Rating:
HighestLowest

Truthful AI: Developing and governing AI that does not lie

Owain Evans, Owen Cotton-Barratt, Lukas Finnveden, Adam Bales, Avital Balwit, Peter Wills, Luca Righetti, William Saunders
arXiv·2021
In many contexts, lying -- the use of verbal falsehoods to deceive -- is harmful. While lying has traditionally been a human affair, AI systems that make sophisticated verbal statements are becoming increasingly prevalent. This raises the question of how we should limit the harm caused by AI "lies" (i.e. falsehoods that are actively selected for). Human truthfulness is governed by social norms and by laws (against defamation, perjury, and fraud). Differences between AI and humans present an opportunity to have more precise standards of truthfulness for AI, and to have these standards rise over time. This could provide significant benefits to public epistemics and the economy, and mitigate risks of worst-case AI futures. Establishing norms or laws of AI truthfulness will require significant work to: (1) identify clear truthfulness standards; (2) create institutions that can judge adherence to those standards; and (3) develop AI systems that are robustly truthful. Our initial proposals for these areas include: (1) a standard of avoiding "negligent falsehoods" (a generalisation of lies that is easier to assess); (2) institutions to evaluate AI systems before and after real-world deployment; and (3) explicitly training AI systems to be truthful via curated datasets and human interaction. A concerning possibility is that evaluation mechanisms for eventual truthfulness standards could be captured by political interests, leading to harmful censorship and propaganda. Avoiding this might take careful attention. And since the scale of AI speech acts might grow dramatically over the coming decades, early truthfulness standards might be particularly important because of the precedents they set.
No ratings yet
View paper →

Game Transformations That Preserve Nash Equilibria or Best-Response Sets

Emanuel Tewolde, Vincent Conitzer
arXiv·2021
In this paper, we investigate under which conditions normal-form games are (guaranteed to be) strategically equivalent. First, we show for N-player games (N >= 3) that (A) it is NP-hard to decide whether a given strategy is a best response to some strategy profile of the opponents, and that (B) it is co-NP-hard to decide whether two games have the same best-response sets. Combining that with known results from the literature, we move our attention to equivalence-preserving game transformations. It is a widely used fact that a positive affine (linear) transformation of the utility payoffs neither changes the best-response sets nor the Nash equilibrium set. We investigate which other game transformations also possess either of the following two properties when being applied to an arbitrary N-player game (N >= 2): (i) The Nash equilibrium set stays the same; (ii) The best-response sets stay the same. For game transformations that operate player-wise and strategy-wise, we prove that (i) implies (ii) and that transformations with property (ii) must be positive affine. The resulting equivalence chain highlights the special status of positive affine transformations among all the transformation procedures that preserve key game-theoretic characteristics.
No ratings yet
View paper →

A General Language Assistant as a Laboratory for Alignment

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Jared Kaplan
arXiv·2021
Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.
No ratings yet
View paper →

Scaling Laws and Interpretability of Learning from Repeated Data

Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, Scott Johnston, Ben Mann, Chris Olah, Catherine Olsson, Dario Amodei, Nicholas Joseph, Jared Kaplan, Sam McCandlish
arXiv·2022
Recent large language models have been trained on vast datasets, but also often on repeated data, either intentionally for the purpose of upweighting higher quality data, or unintentionally because data deduplication is not perfect and the model is exposed to repeated data at the sentence, paragraph, or document level. Some works have reported substantial negative performance effects of this repeated data. In this paper we attempt to study repeated data systematically and to understand its effects mechanistically. To do this, we train a family of models where most of the data is unique but a small fraction of it is repeated many times. We find a strong double descent phenomenon, in which repeated data can lead test loss to increase midway through training. A predictable range of repetition frequency leads to surprisingly severe degradation in performance. For instance, performance of an 800M parameter model can be degraded to that of a 2x smaller model (400M params) by repeating 0.1% of the data 100 times, despite the other 90% of the training tokens remaining unique. We suspect there is a range in the middle where the data can be memorized and doing so consumes a large fraction of the model's capacity, and this may be where the peak of degradation occurs. Finally, we connect these observations to recent mechanistic interpretability work - attempting to reverse engineer the detailed computations performed by the model - by showing that data repetition disproportionately damages copying and internal structures associated with generalization, such as induction heads, providing a possible mechanism for the shift from generalization to memorization. Taken together, these results provide a hypothesis for why repeating a relatively small fraction of data in large language models could lead to disproportionately large harms to performance.
No ratings yet
View paper →

Learning Iterative Reasoning through Energy Minimization

Yilun Du, Shuang Li, Joshua B. Tenenbaum, Igor Mordatch
arXiv·2022
Deep learning has excelled on complex pattern recognition tasks such as image classification and object recognition. However, it struggles with tasks requiring nontrivial reasoning, such as algorithmic computation. Humans are able to solve such tasks through iterative reasoning -- spending more time thinking about harder tasks. Most existing neural networks, however, exhibit a fixed computational budget controlled by the neural network architecture, preventing additional computational processing on harder tasks. In this work, we present a new framework for iterative reasoning with neural networks. We train a neural network to parameterize an energy landscape over all outputs, and implement each step of the iterative reasoning as an energy minimization step to find a minimal energy solution. By formulating reasoning as an energy minimization problem, for harder problems that lead to more complex energy landscapes, we may then adjust our underlying computational budget by running a more complex optimization procedure. We empirically illustrate that our iterative reasoning approach can solve more accurate and generalizable algorithmic reasoning tasks in both graph and continuous domains. Finally, we illustrate that our approach can recursively solve algorithmic problems requiring nested reasoning
No ratings yet
View paper →

Scaling Laws for Reward Model Overoptimization

Leo Gao, John Schulman, Jacob Hilton
arXiv·2022
In reinforcement learning from human feedback, it is common to optimize against a reward model trained to predict human preferences. Because the reward model is an imperfect proxy, optimizing its value too much can hinder ground truth performance, in accordance with Goodhart's law. This effect has been frequently observed, but not carefully measured due to the expense of collecting human preference data. In this work, we use a synthetic setup in which a fixed "gold-standard" reward model plays the role of humans, providing labels used to train a proxy reward model. We study how the gold reward model score changes as we optimize against the proxy reward model using either reinforcement learning or best-of-$n$ sampling. We find that this relationship follows a different functional form depending on the method of optimization, and that in both cases its coefficients scale smoothly with the number of reward model parameters. We also study the effect on this relationship of the size of the reward model dataset, the number of reward model and policy parameters, and the coefficient of the KL penalty added to the reward in the reinforcement learning setup. We explore the implications of these empirical results for theoretical considerations in AI alignment.
No ratings yet
View paper →

Consistency Models

Yang Song, Prafulla Dhariwal, Mark Chen, Ilya Sutskever
arXiv·2023
Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256.
No ratings yet
View paper →

Personalisation within bounds: A risk taxonomy and policy framework for the alignment of large language models with personalised feedback

Hannah Rose Kirk, Bertie Vidgen, Paul Röttger, Scott A. Hale
arXiv·2023
Large language models (LLMs) are used to generate content for a wide range of tasks, and are set to reach a growing audience in coming years due to integration in product interfaces like ChatGPT or search engines like Bing. This intensifies the need to ensure that models are aligned with human preferences and do not produce unsafe, inaccurate or toxic outputs. While alignment techniques like reinforcement learning with human feedback (RLHF) and red-teaming can mitigate some safety concerns and improve model capabilities, it is unlikely that an aggregate fine-tuning process can adequately represent the full range of users' preferences and values. Different people may legitimately disagree on their preferences for language and conversational norms, as well as on values or ideologies which guide their communication. Personalising LLMs through micro-level preference learning processes may result in models that are better aligned with each user. However, there are several normative challenges in defining the bounds of a societally-acceptable and safe degree of personalisation. In this paper, we ask how, and in what ways, LLMs should be personalised. First, we review literature on current paradigms for aligning LLMs with human feedback, and identify issues including (i) a lack of clarity regarding what alignment means; (ii) a tendency of technology providers to prescribe definitions of inherently subjective preferences and values; and (iii) a 'tyranny of the crowdworker', exacerbated by a lack of documentation in who we are really aligning to. Second, we present a taxonomy of benefits and risks associated with personalised LLMs, for individuals and society at large. Finally, we propose a three-tiered policy framework that allows users to experience the benefits of personalised alignment, while restraining unsafe and undesirable LLM-behaviours within (supra-)national and organisational bounds.
No ratings yet
View paper →

Let's Verify Step by Step

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, Karl Cobbe
arXiv·2023
In recent years, large language models have greatly improved in their ability to perform complex multi-step reasoning. However, even state-of-the-art models still regularly produce logical mistakes. To train more reliable models, we can turn either to outcome supervision, which provides feedback for a final result, or process supervision, which provides feedback for each intermediate reasoning step. Given the importance of training reliable models, and given the high cost of human feedback, it is important to carefully compare the both methods. Recent work has already begun this comparison, but many questions still remain. We conduct our own investigation, finding that process supervision significantly outperforms outcome supervision for training models to solve problems from the challenging MATH dataset. Our process-supervised model solves 78% of problems from a representative subset of the MATH test set. Additionally, we show that active learning significantly improves the efficacy of process supervision. To support related research, we also release PRM800K, the complete dataset of 800,000 step-level human feedback labels used to train our best reward model.
No ratings yet
View paper →

Llama 2: Open Foundation and Fine-Tuned Chat Models

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom
arXiv·2023
In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.
No ratings yet
View paper →

Chain-of-Thought Reasoning is a Policy Improvement Operator

Hugh Zhang, David C. Parkes
arXiv·2023
Large language models have astounded the world with fascinating new capabilities. However, they currently lack the ability to teach themselves new skills, relying instead on large amounts of human-generated training data. We introduce SECToR (Self-Education via Chain-of-Thought Reasoning), a proof-of-concept demonstration that language models can teach themselves new skills using chain-of-thought reasoning. During the self-learning loop, SECToR asks models to solve addition problems using chain-of-thought reasoning before training the next version of the model to solve those same problems directly without using such reasoning. This process often results in an improved model which can, when again augmented with chain-of-thought reasoning, solve even harder problems than the original model, allowing the self-learning loop to continue. Language models trained via SECToR autonomously learn to add up to the longest-length-digit numbers without access to any ground truth examples beyond an initial supervised fine-tuning phase consisting only of numbers with 6 or fewer digits. Our central hypothesis is that chain-of-thought reasoning can act as a policy improvement operator, similarly to how Monte-Carlo Tree Search is used in AlphaZero (Silver et al., 2017). We hope that this research can lead to new directions in which language models can learn to teach themselves without the need for human demonstrations.
No ratings yet
View paper →

Causal Message Passing for Experiments with Unknown and General Network Interference

Sadegh Shirani, Mohsen Bayati
arXiv·2023
Randomized experiments are a powerful methodology for data-driven evaluation of decisions or interventions. Yet, their validity may be undermined by network interference. This occurs when the treatment of one unit impacts not only its outcome but also that of connected units, biasing traditional treatment effect estimations. Our study introduces a new framework to accommodate complex and unknown network interference, moving beyond specialized models in the existing literature. Our framework, termed causal message-passing, is grounded in high-dimensional approximate message passing methodology. It is tailored for multi-period experiments and is particularly effective in settings with many units and prevalent network interference. The framework models causal effects as a dynamic process where a treated unit's impact propagates through the network via neighboring units until equilibrium is reached. This approach allows us to approximate the dynamics of potential outcomes over time, enabling the extraction of valuable information before treatment effects reach equilibrium. Utilizing causal message-passing, we introduce a practical algorithm to estimate the total treatment effect, defined as the impact observed when all units are treated compared to the scenario where no unit receives treatment. We demonstrate the effectiveness of this approach across five numerical scenarios, each characterized by a distinct interference structure.
No ratings yet
View paper →
PreviousPage 2 of 7Next