MMA-ASIA: A Multilingual and Multimodal Alignment Framework for Culturally-Grounded Evaluation
Weihua Zheng, Zhengyuan Liu, Tanmoy Chakraborty, Weiwen Xu, Xiaoxue Gao, Bryan Chen Zhengyu Tan, Bowei Zou, Chang Liu, Yujia Hu, Xing Xie, Xiaoyuan Yi, Jing Yao, Chaojun Wang, Long Li, Rui Liu, Huiyao Liu, Koji Inoue, Ryuichi Sumida, Tatsuya Kawahara, Fan Xu, Lingyu Ye, Wei Tian, Dongjun Kim, Jimin Jung, Jaehyung Seo, Nadya Yuki Wangsajaya, Pham Minh Duc, Ojasva Saxena, Palash Nandi, Xiyan Tao, Wiwik Karlina, Tuan Luong, Keertana Arun Vasan, Roy Ka-Wei Lee, Nancy F. Chen
arXiv·2025
Large language models (LLMs) are now used worldwide, yet their multimodal understanding and reasoning often degrade outside Western, high-resource settings. We propose MMA-ASIA, a comprehensive framework to evaluate LLMs' cultural awareness with a focus on Asian contexts. MMA-ASIA centers on a human-curated, multilingual, and multimodally aligned multiple-choice benchmark covering 8 Asian countries and 10 languages, comprising 27,000 questions; over 79 percent require multi-step reasoning grounded in cultural context, moving beyond simple memorization. To our knowledge, this is the first dataset aligned at the input level across three modalities: text, image (visual question answering), and speech. This enables direct tests of cross-modal transfer. Building on this benchmark, we propose a five-dimensional evaluation protocol that measures: (i) cultural-awareness disparities across countries, (ii) cross-lingual consistency, (iii) cross-modal consistency, (iv) cultural knowledge generalization, and (v) grounding validity. To ensure rigorous assessment, a Cultural Awareness Grounding Validation Module detects "shortcut learning" by checking whether the requisite cultural knowledge supports correct answers. Finally, through comparative model analysis, attention tracing, and an innovative Vision-ablated Prefix Replay (VPR) method, we probe why models diverge across languages and modalities, offering actionable insights for building culturally reliable multimodal LLMs.